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We present calculations of g(2)(k 1, k2; t), the fourth order correlation function of the electric field amplitude 
of light scattered by a flexible polymer chain, with and without hydrodynamic interactions using the 
Rouse and Zimm models respectively. Calculations of the second order correlation function, g")(k, t) are 
also presented. The results are shown to be in excellent agreement with theoretical scaling predictions in 
the limit of large N, N being the number of subunits in the chain. Calculations made using the Hearst 
approximation of the Zimm model show that numerical values of the scaling indices and the initial slopes 
of g") and g (2) undergo a smooth transition from the free-draining to the non-free draining limiting values 
as the strength of the hydrodynamic interaction is increased. 

(Keywords: polymer; light scattering; photon cross-correlation spectroscopy; Rouse; Zimm; Oscen tensor) 

I N T R O D U C T I O N  

The technique of photon cross-correlation spectroscopy 
(PCCS) has been used previously to investigate the fourth 
order correlation function, g(Z)(k~,k2;t) of ordered 
colloidal systems and dilute polymer solutions ~-4, where 
k 1 and k z are the scattering vectors corresponding to 
the positions of two detectors. In a recent publication 5 
a theoretical framework was presented for computing g(2) 
for polymer chains of variable chain rigidity in the 
absence of hydrodynamic interactions using the Rouse 6 
and Harris-Hearst  7 models to describe the internal 
dynamics of the chain. As is now well established s, for 
long polymer chains in dilute solutions, hydrodynamic 
interactions have a significant effect on chain dynamics 
and self diffusion, so that a complete theoretical descrip- 
tion of the wave vector dependence of g(2) must take these 
effects into account. In the present work, therefore, we 
compute g (2) and the initial decay rate, F(k 1, k2) for a 
Rouse-Zimm model of a polymer chain in dilute solution. 
In this model hydrodynamic interactions within a single 
chain are taken into account by means of a pre-averaged 
Oseen tensor 9. The primary objective of this work is to 
establish, by numerical evaluation of the appropriate 
theoretical expressions, the dependence of F(k I, k2) on  
kRg, where Rg is the radius of gyration of the isolated 
polymer chain in dilute solution, and the variation of 
this dependence with N, the number of segments used in 
the model of the chain. We compare our findings with 
predictions based on scaling theory TM and analytical 
calculations 11. In view of the difficulty of solving ana- 
lytically 12 more complex problems involving polymer 
dynamics in concentrated solutions and melts it is clearly 
desirable to have effective simulation and numerical 
analysis techniques available. However, limitations of 
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computing speed and memory have necessitated, for 
concentrated polymeric systems, the use of rather small 
values for N. (For example, Baumg~irtner and Binder 13 
simulated an ensemble of interacting polymer chains each 
with N =  16 using a Monte Carlo technique. In a more 
recent study, Kolinski et al. ta-x7 fail to reach the 
reptation regime in a model melt, using a lattice Monte 
Carlo simulation, even where N achieves values of 800.) 
In another context, Weill and des Cloiseaux Is discussed 
the N dependence of static and dynamic properties of an 
isolated polymer chain in solution in an attempt to 
understand discrepancies between dynamical scaling law 
predictions and experiment. They observed, on the basis 
of a simple theoretical model for chain dynamics, that 
the dynamical properties of chains of N links converge 
much more slowly to the N ~  ~ asymptotes than the 
static properties. Caution is therefore needed in making 
generalizations on the basis of numerical calculations of 
chain dynamics. In this paper we present the N- 
dependence of dynamical properties of Rouse and Rouse- 
Zimm chains as reflected in the kRg dependence of g(~) 
and 9 (2) for values of N sufficient to display the transition 
from subunit dynamics to an asymptote, which approaches 
closely the scaling law predictions. (Pusey 4 has shown 
how scaling law forms for the dependence of 0 '(2) o n  kRg 
can be obtained on the basis of an assumed power 
dependence of g(1) on kRg for large values of kR,.) Such 
numerical predictions for the kRg dependence of g (2) 
will apply to the experimental situation where cross- 
correlation dynamic light scattering is carried out on very 
long flexible polymer chains in dilute, theta solution. 

THEORY 

For a detailed review of dynamic light scattering theory 
with the emphasis on the measurement of statistical 
properties of scattered light the review of Pusey 19 is 
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recommended. What follows is intended to define our 
notation and describe briefly the theoretical models of 
polymer dynamics we have adopted. In a conventional, 
single-detector, dynamic light-scattering experiment the 
time-dependent electric field correlation function, g(1)(k, t), 
is obtained from the measured intensity autocorrelation 
function. #tl)(k, t) is given by2°: 

etl)(k, t )=  (E(k, 0)E*(k, t)> (1) 
<l(k)> 

where E(k, t) is the scattered field amplitude at time t, 
l(k) is the mean scattered intensity and k is the scattering 
vector. If two detectors are set up to receive the light 
scattered by particles diffusing through the same small 
scattering volume and their outputs are cross-correlated 
we obtain the intensity cross-correlation function, 
g(2)(k~, k2; t), which is given byL4'5: 

9(2)(k 1, k2; t ) - ( I ( k x '  O)I(k2' t)> (2) 
(l(k,)><I(k2)> 

(~) k 2 (2) 1 +fllg,NT( , t)l "F-gNG(k, t) k~ = k 2 = k  

= (3) 

t + g(N2)G(kl, k2; t) kl # k  2 (4) 

where kx and k2 are the two scattering vectors, corre- 
sponding to the positions of the detectors and fl is a 
number of order unity, gtN2~(k~, k2; t) can be factorized 

.~(2)T and an intra- into a number fluctuation term, UNG, 
.(2)~ Even when ki and k2 are very molecular term, ~NG. 

similar, the second term on the right hand side of equation 
(3) is negligible 4, provided Ik~-k21V1/3>',l, where V is 
the scattering volume. 

Where the scattering particles are linear polymers we 
may consider the polymer chain to comprise N scattering 
centres ('beads') 2°. The intramolecular term then reflects 
four-bead correlations depending on the internal dynamics 
of the beads in one polymer chain. We consider here a 
bead-spring model of a polymer in which there are N 
beads and N - I  linkages between the beads. The 
coordinates of the 'beads' are given by: 

N--1 
r i= ~ Qi~l~ (5) 

a=l  

where the {p~} are the normal modes of the chain with 
relaxation times, r~, and the </~2> are the mean-square 
equilibrium mode lengths. The beads are supposed to be 
connected by Hookean springs of force constant 3kBT/b 2, 
where kB is the Boltzmann constant, T is the absolute 
temperature and b is the rms length of a spring. Each 
bead has a frictional constant p for translational motion 
with respect to the solvent. The equations of motion are 
then as given by Zimm 2~ (see also reference 5, equation 
(11)). 

As shown by Pecora 22, 

1 
y(1)(k, t) = N5 exp(-- DkZt) 

I ( ~ < , t t 2 > k 2  2 2 ) 1  -- {Qi, + Q j , -  2Qi~Qj, e-'/~} (6) x exp 6 

where D is the translational diffusion coefficient of the 
polymer chain. 

The initial slope of g (~), d[g")(k, t)J/dtl, = 0 is given as: 

dg")(k, t) t=o = k2 
dt N 2 

2 k 2 <#~> 2 2 

<.2>  eictQ 2t" ~ (7) 

Similarly 5, ~r~G"~2)~ is expressed in terms of the coefficients 
{Qi~,} of the chain as: 

g ( 2 ) l t b  b • t) NG t~l, ~2~ 

- (8) 

exp - k ~ exp - k 
t_ ij a \ /Ji._ ij ~t \ / J  

where the condensed notation 

Qij, = Q i , -  Qj, (9) 

has been used. The slope, dtloo-(2)tWdt , ~,~NGI/ It=0, is given by 
d (2)i 2 

v ( P ~ > k  k 'q f~ 1og(gNG(ki, k2;t)) = j f f - 1  ~ ~ 1- 2~ij~kt~ 
dt t = 0 i jkl  ~ .)T~t 

1 

- ~ ~ (kl~Q,}~ + k~g~ ,~  + 2k1 

where 

( <~> ,.~,.,~ 
'~" = "q(2)ll]Z~4NG t ' l ,  k2; 0) e x p ~ - ~  ~l'zi2~ 

× [ ~  ~ e x p ( -  (62) k2Q2~)] 

(lo) 

(11) 

The Rouse model for a flexible polymer 
In the Rouse model the eigenvalues, 2~, are given by 6 

  4sin [;:l . . . . .  

and we have 

(#2> = b2/2~ (13) 

For a Rouse chain 22 

z, = b2/3ND2= (14) 

where b is given by 9 

b = Rg[6/(N - 1 )]1/2 (15) 

Rg being its radius of gyration. (In Zimm's notation, as 
m equation (38) of ref. 21, our relaxation times, v=, are 
given by (t~2=)-1.) The Qi~ are given byE3: 

Qi~= cos i = 1 , 2  . . . . .  N (16) 

For the sake of definiteness we have taken as D for 
the Rouse model the value obtained by assuming the 
polymer behaves as a Stokes-Einstein sphere of radius 
equal to Rg, i.e. 

kBT 
D = - -  (17) 

6~ZqRg 
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where q is the viscosity of the solvent. O(1)(k, 0) and 
9(2)(k, k, 0) and their initial slopes were evaluated explicitly 
by fourfold summation over the N beads using equations 
(6)-(17). The results are described in the next section. 
(Note that in the case of the Rouse model, the initial 
slopes of 9 (1) and O (2) are proportional to D.) 

Because of the orthonormality of the chosen Q~, for 
the Rouse model, the expression in equation (10) may 
be simplified to give s 

d log(g~)J(kl, k2; t )_  W -  1Dkl.k 2 Z 
dt Ukt 

x exp - Z \ ~  L'-I~,j~ ~ k~Qk2, + 2kl.k2Qu, QkJ 
k 

x (6ik -- 3i, - 6ik + 3jz) (18) 

where the 6 u are Kronecker deltas. 
Another approach to evaluating equation (6), for 

kb<<l, is to approximate the sums from 1 to N by 
integrating analytically from 0 to N. Substituting in 
equation (6), for large N, approximate forms of the 
eigenvalues, 

~27~2 

~,a-- N 2 (19) 

and of the Qi=, 

(2"~1/2 c o s [ x ~ ( N - - ~ ) ]  seven  (20) 

= ( 2 )  1/2 s in [Tra (N-~)  ] 0todd 

( a = l , 2  . . . . .  N - l )  

we obtain the Debye expression for g")(k, 0) (ref. 20): 

g(X)(k, 0 ) = ~ R 4  [k2R 2 -  1 +exp(-k2R2)]  (21) 

Equations (8) and (18) were evaluated analytically by 
approximating sums by integrals in a similar way (see 
equations 15 and 16 in ref. 5) to give g(2)(k, k; 0): 

g(2)(k'k;0)=dV-l//k 87 30 8 392 
2kTRag 6 6 F k Rg k Rg 4 4 9kSRSg 

2 2 40 
× e x p ( - k  Rg) -  3 k ~ 6  exp(-k2R 2) 

lbK Kg 

whcre X = [g(U(k, 0)] 2, 9(1~(k, 0) being given by equation 
(21) and the initial slope of 9(2)(k, k, 0) by: 

(2)ldt "t)),=o 
d(ONo(k,k, 1 2 [- 10 4 32 

k R s 3k6R 6 

' 1 x [exp( -  k2R~) - 1] - ~  (exp{-ekER~}- 1) (23) 

Equations (22) and (23) agree with the results of 
Pusey 4. 

Hearst approximation of the Zimm model 
Here it is assumed that the free-draining eigenfunctions, 

Qi,, given by Zimm 21 for a continuous chain may be used 

as approximations for the eigenfunctions in the discrete 
case for 0 < h <  ~ ,  where h is the draining parameter; h 
is related to the frictional coefficient of each bead, p, as 
defined by Zimm21: 

h = NU2p/(12n3)l/2bq (24) 

where p is the friction constant of each statistical segment 
and b is given by equation (15). The Qi~ are as given in 
equation (20). The mean-square equilibrium mode lengths 
are given by equation (13). In the free-draining case 
(h~0)  the eigenvalues, 2,, are given by equation (19). 
For non-zero values of h, the eigenvalues, 2,, within the 
Hearst approximation 24 are the sum of free-draining and 
non-draining contributions: 

I/;2 
2 ~ = ~  (~2 + 4h 2'~'] (25) ~2/# 

As described by Hearst 24, for ~ ~< 8, 2'~ was set equal 
to the diagonal elements of the matrix G given in Table 
1 of Zimm eta/.  25, while for a~>9, 22~/n 2 was set equal 
to t~ 3/2. The relaxation times are given by: 

b2p 
z ~ -  - -  ( 2 6 )  

3kaT2= 

(The relaxation times, z~, are given by (a2=)-1, using 
Zimm's notation 21, as for the Rouse model.) In the Zimm 
limit of h ~ ,  the relaxation times, z~, are given 
by21,24,25 

qb 3[ (N-  1)x] 3/2 
(27) 

z== 121/2kaT2, ~ 

According to Bloomfield and Zimm 26 the translational 
diffusion coefficient for a straight chain flexible macro- 
molecule is given by: 

D = k a T I I +  p ( ~ 1 , ~ , 1 (  6 ~x/2 
Np 6m/(N-1)  i i=1 ~b2(ii-j)] 

+~', L ( 6 .']I/2']l 
,=1j=,+1 ~bS~j- i)]  1/I (28) 

In the limit of p ~  (h~oo)  the first term can be 
neglected. Figure la shows the N-dependence of D, which 
approaches at large N the value obtained by converting 
the double sums to integrals, 4ksT/(9na/zqR,) (equation 
67 of Bloomfield and Zimm26). It may be seen that, even 
for N =  100, the maximum value for N used in our 
calculations of the correlation functions for the Zimm 
model, D lies below this asymptotic value. For consistency, 
therefore, in our calculations ofg (x) and 9 (2) we  computed 
D(N) using equation (28). The h-dependence of D 
calculated from equation (28) closely follows the h- 
dependence given by the analytical expression for D(h) 
derived by Kirkwood within the pre-averaging approxi- 
mation. Figure l b shows the dependence of D on h, 
obtained from the integral formula: 

ka T 4kB T 
D = { (29) 

6Rghrl(2x3) 1/2 97z3/2 Rgrl 

which is the result obtained using the Kirkwood approxi- 
mation (ref. 27, see also p. 279 of ref. 9). As h ~ oo the 
first term is clearly negligible as with equation (28); as 
h --* 0 the first term becomes infinitely large. Despite this 
unphysical behaviour of D(h), at h = 0  the values of the 
chain correlation functions for small h interpolate sensibly 
between Rouse and Zimm limits (see next section). 

26 POLYMER, 1990, Vol 31, January 



6.0 

5.5 

4.5 

% 
5.0 

4.0 

3.5 

10 100 1000 

N 

Dynamic light scattering from flexible polymer chains. W. G. Griffin and M. C. A. Griffin 

6.5 

I I I I 

1.0 x 1 0 - 9  

\ 

1 . 0 x  10 10 

1 . 0 x  10 11 

b 
I I I , 

0.001 0.01 0.1 1 10 100 

h 

Figure l (a) Diffusion coefficient ( ) o fa  Z imm polymer (h --* oo) of 
radius of gyration, Rg, of 50 nm in a solvent of viscosity, r/, of 1.0 m P a  s 
as a function of the number  of beads, N. ( - - - ) ,  4kBT/(97r3/2tlRg). (b) 
Diffusion coefficient of a Z imm polymer of radius of gyration, R~, of 
50 nm in a solvent of viscosity, r/, of 1.0 m P a  s for N --* ov as a function 
of the draining parameter,  h 

RESULTS 

Calculations of 9tl)(k, t) and g(2)(k, k; t) were carried out 
for a range of values of N and k, Rg being fixed at 50 nm. 
The distance scales that are observable in a light 
scattering experiment are of the order of k-  1; results are 
therefore presented as functions of kRg, and kb. 

The Rouse model 6 
For the Rouse model, the mean-square equilibrium 

mode lengths, the normal modes, their relaxation times 
and eigenvalues, the distance between the beads and the 
diffusion coefficient are given by equations (12)-(17). 

Calculations of g(l~. For various values of N, up to 
N = 300, g(X)(k, 0) was computed explicitly as a function 
of k by carrying out the two-fold summation in equation 

(6), making the appropriate substitutions. Selected values 
are given in Table I. At low values of kRg (for kb<<2), 
gin(k, 0) was found to be well approximated by the Debye 
expression (21). As kR, increased, the value for g(1)(k, 0) 
diverged from the Debye value, being smaller by approxi- 

(1) . _ ~  - mately 5% for k b = l .  As kRg~ oo, y (k, 0) N 1, 
whereas the Debye value for g(r)(k, 0) tends to zero. 

In Figure 2 we show the first cumulant of gin(k, t), • 
(O= - d  log(g(1)(k, t))/dtlt=o), computed from equations 
(6) and (7), as a function of kRg for a range of values of 
N. We obtained limiting values of • ~ Dk 2 as kRg--~ 0, 
and O-*NDk 2 as kRg---~oo; Akcasu et al. 28 reported 
similar results for N-- 101 for a Gaussian ring polymer. 
Schaefer and Han 29 indicated that, from scaling argu- 
ments, the expected relaxation rates were ~ = D k  2 for 
kRg<<l, and ~=Dm k2 for kRg~l ,  where D m is the 
monomer translational diffusion coefficient, which is 
equal to ND, in agreement with our findings. 

Calculations of g(2). At low values of kRg, gt2)(k,  k; 0) 
obtained from equation (8), making substitutions from 
equations (12}-(17) (explicit sums), was in good agree- 
ment with that obtained from equation (22) (approxi- 
mation by integrals). Selected values are given in Table 2 
(NB the five sum expression (8) was in general not 
evaluated for N > 30 because of the excessive computing 
times required.) At kb=2, the value of g(2)(k, k; 0) 

T a b l e  1 Values of gin(k, 0) for the Rouse model 

g")(k, oy  
kR, N =  8 20 100 300 (Debye) 

0.1 0.9963 0.9965 0.9967 0.9967 0.9967 
1 0.7118 0.7257 0.7358 0.7358 0.7358 
2 0.3573 0.3660 0.3774 0.3773 0.3773 
4 0.1492 0.1190 0.1175 0.1172 0.1172 

10 0.1250 0.0505 0.0215 0.0200 0.0198 
60 0.1250 0.0500 0.0100 0.0033 0.0006 

100 0.1250 0.0500 0.0100 0.0033 0.0002 

"Values of g(1)(k, 0) obtained from equation (21) 

N 

O 300 

~. I 100 

1 

100 

± ~o 

10 / . . . . .  -" A 8 

1 ~ I 1 

o.1 1 10 10o 
kR9 

Figure 2 • calculated for the Rouse model given in units of Dk 2, and 
plotted against kRg. The annotat ions on the right hand axis label each 
curve with the corresponding value of N used in the calculations 
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T a b l e  2 Values of g(2)(k, k; 0) for the Rouse model At c o n s t a n t  kRg, as N increased, the value for F obtained 
g~(k, k; 0) o by explicit summation became closer to the value 

kRg N =  8 20 30 (Debye) obtained from the integral formulae. The deviation 
between the two values was more marked for kb > 2 (in 

0.1 1.000 1.000 1.000 1.000 a real experiment information would only be revealed 
1 1.075 1.064 1.058 1.058 
2 1.432 1.386 1.366 1.365 
4 1.825 1.811 1.796 1.791 

10 1.875 1.949 1.962 1.965 
60 1.875 1.950 1.967 1.999 

100 1.875 1.950 1.967 2.000 

107 

= Values of g(2)(k, k; 0) obtained from equation (22) lo8 

10 5 

10 4 
a 

103 

102 

10 1 

100 

0.1 

104 

103 

t -  

10 2 

a 

i I 
1 10 100 

kRg 

N 

I I I 

b 

3013 

100 

obtained from equation (8) was slightly larger than that 
obtained from equation (22) (by 10% for N = 4 ;  the 
difference decreases with increasing N). For kb>~8.5, 
#(2)(k, k; 0)= 2 - N  - t .  By contrast equation (22) gives a 
value of 2 in the limit kRg ~ ~ ,  the same result as we 
obtained earlier by a method of numerical integration s. 
Thus, at large kR~, the values of g(2)(k, k; 0) obtained 
from equation (8) were lower than the corresponding 
values from equation (22). 

In Figure 3a we have plotted the normalized initial 
slope of g(2), as  

- l i m  d (2)i 
t-*o dt [gNo (kl, k2, t)] 

r - (30) 
( 2 ) I  gNG (kl, k2, 0 ) -  1 

(in units of D/R 2) against kRg for a range of values of N. 
F was calculated from equation (30), substituting in the 
value for d(g(2)(k, k, t))/dtlt=o obtained from equation 
08). (Equation (18) contains four four-sum expressions, 
while equation (10) is a five-sum expression. Equation 
(18) is therefore faster to compute.) For N ~< 30 g(E)(k, k; 0) 
was calculated from equation (8). For N > 30 g(2)(k, k ,  0)  
was estimated as follows. For kb<<.2, g(2)(k, k; 0) was 
calculated using equation (22). In the next section we 
show that g(E)(k, k ;  0) obtained for the Hearst approxim- 
ation of the Zimm model approaches g(E)(k, k ;  0)  for the 
Rouse model as N increases (Tables 2 and 5). For kb > 2, 
and 30 < N ~< 100, therefore, g(E)(k, k; 0) was approximated 
by the value obtained for the Zimm model (calculations 
described in full in the next section). For kR~>>.30 
(corresponding to kb~>4.3) and N =  300 g(2)(k, k ;  0) was 
taken to be 2 -  1/300. We have also plotted, for compari- 
son, Fint, defined as F calculated from equations (21)-(23) 
and (30). 

Figure 3a shows that F was nearly constant, for a given 
value of N, for kRg<< 1. In Table 3 we give values for F 
for a range of values of N and kRg. The value of F tends 
to 15 as N--)oo and kRg--* 0, in agreement with Pusey 4 
(the break in the trend for F observable in Table 3 at 
kR.=0.1 results from the change from calculation of 
g(E~(k, k ,  0) using equation (8) to estimation ofg(2)(k,  k ,  0)  
for N > 30, as described above). Figure 3b shows the same 
data with F given in units of Dk 2. The computed curves 
show a crossover region at kRg~ 1, where F starts to 
increase with kR s. For the values derived from the sums, 
the power dependence of F on kRg goes through a 
maximum as kR~ is increased, while the integral formulae 
(equations (21)-(23)) give F oc (kRg)'* for kRg>>l. The 
gradients of the curves for the numerical sums show a 
dependence of F on (kRg) 2 at high values of kRg (for 
kb > 6). The value of F was found to be equal to 2NDk 2. 

300 

100 

20 

8 

2O 

8 

10 1 

I I I 
0.1 1 10 100 

kRg 

Figure 3 (a) F in units of D/R z for the Rouse model, plotted against 
kRg. The annotations on the fight hand axis label each curve with the 
corresponding value of N used in the calculations, while the top, 
unannotated, curve shows Fi.t calculated from equations (21)-(23) and 
(30). (b) F in units of Dk 2 for the Rouse model, plotted against kRg. 
The same symbols are used as in (a). 

T a b l e  3 Values of F for the Rouse model, in units of D/R 2 

kRg N =  8 20 100 300 Fi,." 

0.1 12.46 14.15 15.17 15.07 15.02 
1 15.57 17.54 18.42 18.43 18.43 
2 36.49 40.50 41.30 41.32 41.32 
4 221.3 297.5 313.6 314.5 314.6 

10 1600 3963 9478 1.02 x 104 1.03 x 104 
60 5.76x104 1.44x105 7.20x105 2.17x106 1.30x107 

100 1.60x105 4.00×10 s 2.00×106 6.04x106 1.OOxlO s 

"Values obtained from equations (21)-(23), and (30) 
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about internal modes on a length scale greater than the 
minimum which could be probed by the radiation: k- t ) .  
The point at which the numerical and analytical results 
came into close agreement corresponds with the point at 
which kb =2. Clearly it is not necessary to satisfy the 
condition kb << 1 in order for the approximation 

N fo~ ~ (31) 
1 

to hold true. The transition at kb=2 has a physical 
meaning because it corresponds to the point where the 
distance between the beads is twice the length scale being 
probed. This result is reminiscent of the Nyquist sampling 
theorem 3°, which states, roughly speaking, that equi- 
spaced data, with two or more points per cycle of the 
highest frequency, allow ~ reconstruction of a function, 
whose Fourier transform is very small outside some finite 
interval (a band limited function). In the present case the 
'data' correspond to points on a grid whose spacing is 
defined by the k-~ length scale and the band limited 
function describes the chain conformation. 

In the limit kRg ~ ~ ,  the inverse scattering vector is 
much smaller than the size of the polymer coil and the 
scattered light field becomes a complex Gaussian variable 4. 
Under this condition gt2)(k, k; t) can be factorized and 
expressed in terms of gtl)(k, t), and F can be expressed in 
terms of d(g")(k, t))/dt[,=o and g(2)(k, k; 0 ) 4 :  

lim F =  - 2  d(gta)(k' t ) )  o / (9~(k ,  k; 0 )_  l) (32) 
kRg~ OO dt = 

In addition to our explicit calculations of F, therefore, 
we also calculated an estimated value for F from equation 
(32), F¢~t, and compared Fes t with F. For all N and for 
kb>~6, we found that F =  -2d(gtl)(k, t))/dtlt=o, and the 
ratio F~st/F was 1 + ( N - 1 ) - 1 .  For kRg>4, F~st/F was 
within 10% of the value of 1 + (N--1)-~, reaching this 
value exactly as kRg increased. Thus the Gaussian 
factorization is found to be an approximation appropriate 
for large N and kRg>4. We therefore predict that as 
kRg-. oo, the dependence of F on kRg will be the same 
as for q~. In Figure 5b F and F,~ t are shown against kR_g 
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Vma , (&) and 0m. x (O) for the Rouse model plotted against N 

" m k Table4 Valuesot9 ( , 0 ) f o r t h e Z i m m m o d e l ,  Hearst approximation 

kRg N =  8 20 60 100 

0.1 0.9966 0.9966 0.9967 0.9967 
1 0.7346 0.7338 0.7349 0.7352 
2 0.3963 0.3815 0.3782 0.3778 
4 0.1731 0.1344 0.1221 0.1200 

10 0.1250 0.0519 0.0278 0.0241 
60 0.1250 0.0500 0.0167 0.0100 

100 0.1250 0.0500 0.0167 0.0100 

Table5 Values of gl2)(k, k; 0) for the Zimm model, Hearst 
approximation 

kRg N =  8 20 60 100 

0.1 1.000 1.000 1.000 1.000 
1 1.071 1.063 1.059 1.059 
2 1.411 1.383 1.371 1.368 
4 1.798 1.800 1.794 1.793 

10 1.875 1.947 1.964 1.965 
60 1.875 1.950 1.983 1.990 

100 1.875 1.950 1.983 1.990 

for N = 100. However, it is clear from this figure that F 
shows (approximately) the power dependence on kRg 
predicted theoretically ((kRg) 4 for the Rouse case) only 
over a narrow region of kRg space. Fes t and F are not 
exactly coincident in this region. 

In order to obtain the maximum power dependence 
of F on kRg, 0 . . . .  the slope of the double logarithmic 
plot of F against kRg, O, was determined numerically for 
each pair of adjacent values of kRg. 0ma x was determined 
to an accuracy of better than 0.5% by a process of 
progressive subdivision, and is plotted against N in 
Figure 4. For comparison we have also shown in this 
graph the maximum power dependence of(I) on kRg, Vmax; 
Vmax was greater than 0m, x for all values of N investigated. 
It may be seen that, even for N = 100, the dependence of 
F on kRg was found to be appreciably less than the fourth 
power dependence of • on kRg predicted theoretically 
by de Gennes 31 for the Rouse chain although both Vm, x 
and 0 m a  x approach 4 as N--* ~ .  

The Zimm model 21 (Hearst approximation 24) 
For the Hearst approximation of the Zimm model, the 

mean-square equilibrium mode lengths are given, as for 
the Rouse model, by equation (13), the modes are given 
by equation (20), the eigenvalues by equation (19), the 
distance between the beads by equation (15) and the 
diffusion coefficient by equation (28). 

The limit h -~ oo 
In the limit h ~ oo, the relaxation times are given by 

equation (27). 
The results of the numerical calculations of the static 

values, g(l~(k, 0) and g(E)(k, k ;  0) ,  for the Zimm model, 
given in Tables 4 and 5, were compared with those 
obtained for the Rouse model (Tables 1 and 2). The 
differences between the Rouse and the Zimm models lie 
mainly in their dynamic rather than static properties, 
and, if the Hearst approximation for the Zimm model is 
good, these static values should be identical at large N. 
At small values of kRg (kb<< 1), and at large values of 
kRg (kb ~ 8) there was good agreement between the two 
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sets of values. For  intermediate values of kb, we computed 
the ratios of the values of gtl)(k, 0) and gt2)(k, k; 0) 
calculated from the Hearst approximation to those 
calculated from the Rouse model. For gtl)(k, 0), the ratio 
went through a maximum (of 1.2 for N = 4) at kb ,~ 2.8; 
by contrast, for g(2)(k, k; 0), the ratio went through a 
minimum (of 0.95 for N = 4) in the same region. As N is 
increased the two sets of values approached one another; 
the ratio for g{n(k; 0) approached 1.000 much more 
slowly than that for g(2)(k, k; 0). Since g{1)(k, 0) is used 
in the calculation of gt2)(k, k; 0) (equation (2)), and, in 
all cases the Rouse and Hearst values of g(2)(k, k; 0) are 
in closer agreement than the Rouse and Hearst values of 
gt~)(k; 0), errors arising from the Hearst approximation 
must, to some extent, cancel out in the calculation ofg ~2). 

To calculate F from equation (30), it was necessary to 
obtain d(gt2)(k, k; t))/dt[,=o from equation (10). In Figures 
5a, b and c we compare • and F calculated for N = 100 
for the Rouse and Zimm models. Vma x and 0m, x are plotted 
against N in Figure 6. The values of both are clearly 
lower for the Zimm model than for the Rouse model for 
all values of N. As with the Rouse model, ~--* Dk 2 as 
kRg-+O and gt2)(k, k; 0) tends to unity. • and F for the 
Zimm model vary as (kRg) 2 at large values of kRg, and 
for kRg > 0, (I)zimm < (I) R . . . .  and F z i m m  < F R . . . .  . We found, 
for kR~N<~ 1 x 10 -3, that the denominator  of equation 
(30), (g*2~(k, k; 0 ) -  1), was subject to significant rounding 
errors, causing an overestimate in the value of F. For  
N =  100, and kRg=0.1, F was approximated,  therefore, 
by substituting in the denominator  of equation (30) the 
value of g*2~(k, k; 0) obtained for the Rouse model from 
equation (22). For  kR~--.O and for pre-averaged Oseen 
hydrodynamics Pusey "~ gave a value of F = 39/7 (in units 
of D/R2g). For the values of N used, we found that, for 

' ' ' ' ' I ' ' ' ' ' ' 
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2.2 
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10 100 
N 

Figure 6 Vma x (A) and 0ma , (O) for the Zimm (h~ oo) model plotted 
against N. 

Figure 5 (a) • for the Rouse (0) and the Zimm (h--* o0) ([~) models 
in units of Dk 2 plotted against kRg for N = 100. (b) F for the Rouse 
(0) and the Zimm (h --* oo ) (I-q) models, and F,s t for the Rouse ( . . . .  ) 
and for the Zimm (----)  models in units of Dk 2 plotted against kRg 
for N= 100. (c) F for the Rouse (O) and the Zimm (h--* or) (D) models 
in units of D/R~ plotted against kR s for N = 100 

30 POLYMER, 1990, Vol 31, January 



Dynamic light scattering from 

kRg < 5, F decreased with increasing N; for kRg = 0.1 and 
N <  100, F =  39/7 + 14.3N -°'682. 

In the long chain, non-draining limit, for kR, --* oo and 
for pre-averaged Oseen hydrodynamics the initial slope 
of g(1)(k, t), d(g(~)(k, t))/dt[,=o was predicted theoretically 
to be -k3kBT/6nrl (ref. 28). From D=4kBT/(9n3/2rlRg) 
(see equation (29)) we obtain d(g(1)(k,t))/dtlt=o = 
-3nl/2(kRg)3/8 (in units of D/R 2) and hence, from 
equation (32), F = 3nl/2(kRg)3/4. In our calculations for 
finite N, for kRg>>. 5, F increased with increasing N. As 
kb decreased with increasing N to the value of 2, F 
appeared to approach 3nl/2(kRg)3/4. However, as kb 
increased the dependence of • and F on kRg decreased 
to a quadratic dependence for kb>~6. For N=100  
and kRg-~ oo, t~ was equal to 11.9(kRg) 2. 

Fe~ t was calculated from equation (32) for the Zimm 
model and is plotted against kRg in Figure 5b. The ratio 
F~t/F was constant for kb/> 8, and was larger than for the 
Rouse model for all values of N up to 100, having a value 
of approximately (1 + N - 1/2) (for N = 100, Fe~t/F = 1.091 ). 
For this model, also, the Gaussian factorization is 
appropriate for large values of N. The agreement between 
Vest and F is not as good as for the Rouse model. F shows 
(approximately) the theoretically predicted (~(kRg) 3) 
dependence only over a narrow region of kRg space. 

As N ~ 100, Figure 6 shows that Vm~x approached 3.00; 
this would be predicted from the Gaussian factorization, 
as discussed by Pusey4; however, 0ma x approached 3.04. 
We do not know the reason for this anomaly, which 
presumably derives from imperfections of the Hearst 
approximation. Problems with the Hearst approximation 
may also be indicated by the decrease in F with increasing 
N, up to N=100,  for kRg<5 (see Table 6) which 
contrasts with the behaviour observed for the Rouse 
model (see Table 3). 

Finite values of h 

For finite values of h, the relaxation times are given 
by equation (26). 

We have also carried out calculations of g(~)(k, t) and 
g(21(k, k; t) for a range of values of h. Selected numerical 

Tab le  6 Values  of  F for  the  Z i m m  m o d e l ,  H e a r s t  a p p r o x i m a t i o n ,  
h -~ ac,  in uni t s  of  D/R~ 

kRg N =  8 20 60 100 

flexible polymer chains." W. G. Griffin and M. C. A. Griffin 

results are given in Table 7 for N =  100. For kRg-~0, 
d~=Dk 2 for all values of h. At high values of kR_ 
(kRg = 100), the Zimm (h-~ oo) limit gives • = 11.9(kRg) ~ 
(see previous section) and the Rouse model gives O =  
100(kR~) 2 (Table 3). As h increases from 0.01 to 50, 
decreases smoothly from 97.6(kRg) 2 to 12.4(kRg) 2 (Table 
7). In the calculation of F at kRg=0.1 gtE)(k, k; 01 was 
approximated by the value obtained for the Rouse model 
from equation (22), as described in the previous section. 
F(kRg=0.1) for h- ,  oo (Table 6) is 6.38; as h decreases, 
F(kRg = 0.11 increases monotonically (Table 7), approach- 
ing the value of 15.2 obtained for the Rouse model for 
N =  100 (Table 3) as h-~0. From Figure 7 and Table 7 
it can be seen that Vma x and 0ma x obtained for N =  100 
change smoothly in the transition from the Rouse model 
to the Zimm (h ~ oo) limit, the values of Vma x and 0ma x 
decreasing monotonically with increasing h. The curves 
for Vm~ x and 0m~ x against h cross over at approximately 
h = l .  

Fe~ c was calculated from equation (32) and the limiting 
ratio Fe~t/F at large kRg is given against h in Table 7. A 
smooth increase of Fe~t/F from 1.010 (the same value as 
was obtained for the Rouse model) to 1.088 is observed 
as h is increased from 0.01 to 50; in the Zimm (h--* ~ )  
limit rest/[ '  = 1.091. Thus all the light scattering properties 
presented here for intermediate values of h show behaviour 
varying monotonically between the Rouse and Zimm 
limits. 

3.8 

3.6 

3.4 

3.2 

I I I I I I I I I 

0.1 9.06 7.42 6.44 6.38 
1 10.5 8.64 7.55 7.27 

2 21.15 17.23 14.91 14.31 2a . . . . . . . .  I I I I I I . . . . . . . . .  
4 102.1 93.87 83.30 80.10 10-4 10 3 10-2 10 1 100 101 oo 

10 762.6 1040 1254 1270 h 
60 2.75 x 104 3.84 x 104 6.23 × 104 7.91 × 104 

100 7.63 x 104 1.07 × l 0  s 1.73 x l0  s 2.20 x 105 F igu re  7 Vm,x ( A )  a n d  0ma x ( O )  for  the Z i m m  m o d e l  p lo t t ed  aga in s t  
h for  N = 100 

Tab le  7 Resu l t s  f r o m  the  Z i m m  m o d e l ,  H e a r s t  a p p r o x i m a t i o n ,  finite h, for  N = 100" 

h 0.01 0.1 1 5 50 

qb ( k R s = 0 . 0 5 )  2.5 x 10 - 3  2.5 x 10 - 3  2.5 x 10 - 3  2.5 x 10 -3  2.5 x 10 - 3  
¢9 (kR~ = 100) 9.76 x 105 7.82 x 105 3.22 x l0  s 1.69 x 105 1.24 x l0  s 
Vm, , 3.80 3.74 3.42 3.14 3.01 
F (kR~ = 0 . 1  ) 15.08 13.10 8.42 6.86 6.41 
F (kRg = 100) 1.94 x 106 1.55 × 106 6.27 x 105 3.19 x 106 2.29 x 105 
0max 3.66 3.63 3.42 3.19 3.06 
rest /F (kRg = 100) 1.010 1.013 1.031 1.063 1.088 

* Va lues  of  • a n d  1-" a r e  given in uni t s  o f  D/R 2 
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CONCLUSIONS 

As N increases, g(1)(k, 0), gt2)(k, k; 0) and the initial slope 
of g(2)(k, k; t) approach asymptotic forms theoretically 
predicted 4'29 for the long chain limits of both Rouse 
(free-draining) and Zimm (non-draining i.e. h--*~) 
models. For the Rouse model the maximum power 
dependence of both • and F on kRg increases with 
increasing N to an asymptotic fourth power dependence 
predicted by de Gennes 31 (for O) and by Pusey 4 (for F), 
while for the Hearst approximation of the Zimm model, 
for h ~ ~ ,  a dependence for • on (kRg) 3 is approached, 
while F appeared to approach a dependence on (kRg) TM. 
A third power dependence was predicted by Akcasu et 
al. 2a (for O) and by Pusey 4 (for F). The small deviation 
from this probably arises from imperfections in the 
approximations of the Hearst calculations. For both 
models, for large N, the dependence of • on kRg was 
closer to its theoretical asymptotic value than that of F. 

As kRg~ o0, both • and F vary as (kRg) 2 for both 
Rouse and Zimm models. This was previously shown for 
• by Akcasu et al. 2a and was interpreted in terms of the 
dynamics of subunit diffusion. The value of kRg, at which 
the onset of this (kRg)2-dependence was observed, 
increased with increasing N. Such a dependence is not, 
of course, predicted for F by the integral formula for the 
Rouse model (equations (21)-(23) and (30)), and clearly 
arises when N is finite. In addition, as kRg increases we 
have found that the Gaussian factorization of gt2) is 
appropriate for large N for both Rouse and Zimm 
models, although the scaling law kRg-dependence for • 
and F will only hold over a small range of kRg values. 

For all calculated properties of g~l) and g(2) the Hearst 
approximation of the Zimm model, for h varying from 
0.01 to 50, gave results which varied monotonically from 
'Rouse-like' at h=0.01 to 'Zimm-like' (i.e. as for the 
h ~ oo limit) at h = 50. 

We have shown here how the asymptotic ( N ~  oo) 
theoretical predictions for the kRg-dependence of the 
second and fourth order correlation functions are 
approached with increasing N. The dynamic correlation 
functions exhibit quite different N-dependence for polymer 
chains with and without hydrodynamic interactions. The 
approach of the numerical predictions to their asymptotic 
limits with increasing N is more rapid for the static than 
the dynamic correlation functions for both g (1) and g(2). 
All the results presented in this paper apply to the case 
of flexible polymers in theta solvents. The effects of 
excluded volume interactions on the kRg-dependence of 
F will be treated elsewhere. 

G. Griffin and M. C. A. Griffin 
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